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L§1 Introduction

LThe relevance of the theory of monoids to automata

Ltheory 'has recently become more and more apparent. (See, for example,

LMezei (2] with respect to finite automata, and Laing and Wright [1] with

Lrespect to the theory of commutative machines.) In this paper certain

properties of commutative monoids are discussed; some of them are directly

relevant to the theory of commutative automata. In particular, we are[.
interested in finitely generated monoids and in finite factor monoids.

We begin with a study of three closure operations on

submonoids of a commutative monoid which provides us with tools for the

study of factor monoids. Next we discuss some properties of factor monoids

and give certain conditions for finite factor monoids. We conclude with

the proof that those closure operations lead to finitely generated monoids

when they are applied on any submonoid of any finitely generated free

L commutative monoid. In particular this implies that any normal submonoid

of any finitely generated free commutative monoid is finitely generated.L

L



2.

The notation used in this paper partially follows the

notation used in [1] for employing regular expressions to denote commutative

events. The customary notation of abelian algebras is also used. Thus B*,

x*, and X* denote the commutative monoids generated by B (any non-empty set

of elements of a given commutative monoid,) x (any element of a given com-

mutative monoid) and X (the identity element of the monoid under discussion).

But "+" denotes the operation of the monoid and therefore x+B* denotes the

coset determined by the monoid generated by B with x as a leader.

The problems discussed in this paper were suggested by

J. B. Wright; I wish to thank him for prompting this research and for his L

continuous interest.
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§2 The closure operators NF1 SF and HF.

Let F be a fixed commutative monoid.

LDefinition 1: Let M be a submonoid of F. We denote by NFCM)

L the set of all elements y of F for which x+y e M

for some x e M. NF(M) is said to be the normal extension of M in F and M is

said to be a normal submonoid of F (in short normal) if f N F(M) = M.

L
Lemma 1: Let NI be a submonoid of F, then:

(i) NF(M) is the minimal normal submonoid of F

which includes M;

1(ii) M is normal iff xx+y EM implies y E M for

any x,y e F.

Remark: For the proof of (i) we shall prove that N F is a

L closure operation on the submonoids of F.

L Proof: (1) NI C N F(M).

Let y c M then y+X E M. Since X E M we get y ( NF(m).

L
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(2) N F(M) is a submonoid of F.

Let x 1x 2 N (M), then x 1y IX +y 2 M for some I1l'2 F 11+I'2+2

yI,y2 e M and therefore (x +x 2) + (y +y 2) c M where y +y2 c M, which shows

that x +x c NF(M). Since X c NF(M) we have that N F (M) is a submonoid of F. U
(3) NF(NF(M)) - NF(M), hence NF(M) is normal.

By (1) we have that N F (M) 9 NF(NF (M)). Let i

y e NF(NF(M)) then y+x (M) for some x 1 NF(M). But y+x I N F (M) implies

y+x +x e M for some x e M and x c N (M) implies x +x & M for some x e M,
1 2 2 1 F1 3 .3

Hence, y+(x ++x +x ) M N where x +x +x e M, which shows that y c NF(M). Thus1 23 12 3

we have NF(M) = NFNF(NM)).

(4) Let M 1M be submonoids of F; if H M M then L14 e l,2 1 2

NF(m) _ N F(M2)- 2

Let x e NF(M) then x+y e M 1 M for some

y c M M which shows that x c N() I

To complete the proof of (i), let M' be any normal submonoid

of F which includes M, then N F (M) C N F (M) = M'. This shows that N F (M) is the

minimal normal submonoid of F which includes M.

I
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IL The proof of .(ii) follows immediately from Df, 1.

L Corollary: Let M be any intermediate submonoid of F b~etween

M and N (M), (i.e., M r M r N (M)), then

N 1 F

Proof: Immediate

Lemma 2: Lot O:F + F be a homomorphism of F onto a monoid

I F * If M is a normal submonoid of F then 0 1(M1 1 1 ' ( l

11 is a normal submonoid of F. In particular, the kernel of € is a normal submonoid

1[ of F.

SRemark: Note that from the commutativity of F it follows

{ that F is commutative.

[ Proof; Since € is a homomorphism it follows. immediately

that 0"1(M ) is a submonoid of F. Let x,x+y e 0'1 (M )

where x,y c F, then we have O(x),O(x+y) = O(x)+O(y) c N . Since M is normalI1 1

we have that 0(y) e M and therefore y c ¢"1(N ). Hence 0'1 (M ) is a normal

L
submonoid of F.



6,

Since A* {M} is a normal submonoid of M we get that L

ker * = *'()X) =-(X,) is a normal submonoid of F.

Lemma 3: Let M be a submonoid of F; then (x+M)e (yIN) J 0

iff (x+N F(M)) {(y+N F(N)) #0

Proof: From M C NF(M) it follows that (x+M)n (y+N) #

I
implies (x+NFC(M)) •Cy+NF(M)) 1 0. On the other hand,

let (x+N (M)) (y+N (M)) 0 then we have x+x1 = Y+Yl for some X, y £ NF (N);

hence x +U u and y +v a v for some ulV 1 , u2, v2 c M. Therefore,
11 2 1 1 22 2

X+XI+UI+V 1 =X+u2 +vI and x+xU = y+y +vl+U1 = Y+v2+u1, which imply

X+(u 2+V) I Y)+(v 2+u ) and this shows that (x+M) n(y+M) 0 0 since u 2+v v2+ul E N.

Lemma 4: Let M and N be two submonoids of F. If MN N

and N is normal then

x c N & (x+M)A(y+I) 1 0 implies y e N.

Proof: We have y+m = x+m where m ,m £ M Q N. Hence

m 2y+m2 c N and therefore y c N.
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SDefinition 2: Let M and M be two submonoids of F. We say that1

M is subtractive onto M iff for any x c M there

L is y c M such that x-y c M. We denote by SF(M) the set of all elements

L x c F such that x+y c M for some y E F.

LLemma 5: Let M be a submonoid of F, then S FCM) is the

Simaximal submonoid of F which is subtractive onto M.

Proof: Clearly A e SF(M). Let x,y e S (M), then we have

x+x ,y+y c M for some x ,y £ F. Hence

(x+y)+(x +y) (x+x)+(y+y) c M, which shows that x+y e SF(M). Therefore

SSF(M) is a submonoid of F. By the definition of F(M) it follows that any sub-

monoid of F which is subtractive onto M is included in SF(M).

ICorollary: M S F(M).

Proof: M itself is subtractive onto M.

L
LLemma 6: Let M be a submonoid of F then SF (M) satisfies the

1 following condition:
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for any x,y c F x~y S F(M) implies

x e SF(M). (In particular, x~y c M implies x e SF(M).) [O

Proof: Let x+y e SF(H) then x+(y4z) e M for some z e F,

hence x c S (M).

Corollary: SF (M) is a normal submonoid of F. Hence, x E S F(M)

(x+M)r (y+M) 0 0 implies y C SF(M).

Proof: Immediate; the result follows from Lemma 4.

Lemma 7: S is a closure operation on the submonoids of F; i.e.,F

(i) M I SF(M) and SFCM) is a submonoid of F,

(ii) M M implies S F,(M 1 S (M 2

(iii) SF CSF(M)) = SF(M).

Proof; We had (i) as a corollary to Lemma 5. The proof

of (ii) is immediate by Df. 2. From (i) follows

that SF(M) G SF(SF (M)); so let x c SF(SF(M)) then we have x+y £ S F(M) for some

y c F and so we have x+(y+t) c M for some yZ E F, thus x e SF(M).

[
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Corollary: Let M be an intermediate submonoid of F between

Mi and SF (M) then SFC(M) SF(M).

Proof: Immediate.

LLemma 8: Let Ni be an intermediate submonoid of F between.1

NM and S (M). If M is normal then it is subtractive
F 1

L onto M.

I Proof: Let x e M S (M), then x+y c M for some y e (M).-- 1 F SF

But M S M and so xx+y e MN which implies that1 1

y E Mi. Hence for any x c MN there is y e MI such that x+y C M.

Lemma 6 implies the following relation between the sets

of generators for F and for S F(M)

LLemma 9: Let W be a set of generators for F then

We' = {w c W : (w+F)n M J 0} is a set of

generators for S (M). In particular, if W is a basis of F then Wt is a basis

of SF(M)4L
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Proof: From the definition of W' it is clear that

W' C SF(M). Let x c SF(M) G F then x is a finite

sum of elements of IV. Let w be any element of IV which is a summand of x,

then we have x = w+y which implies by Lemma 6 that w c SF (I) and therefore

w E W'. Hence x is a finite sum of elements of I' which shows that SF(M) is

generated by W'.

Corollary: (i) If F is free then SF(M) is free.

(ii) If F is finitely generated then SF(M) is

finitely generated.

Proof: Immediate.

The proof of the following lemma is now obvious and so

is not given here.

Lemma 10: Let M, NI and M be submonoids of F.1 2 _

(i) M N1I implies that if M is subtractive onto
1 2

M then it is subtractive onto NI 2!
1 2 lI
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(ii) M G M implies that M is subtractive onto M
1 1

L iff it is subtractive onto N (M).
F

{Definition 3: Let-M be a submonoid of F. The submonoid spanned

by M in F is denoted by fF(M) and defined by

1. (M) (x e F :x = X V x*C) N (M) X*

F dfF

Lemma 11: Let M be a submonoid of F. Ii (M) is a normal

submonoid of F which includes M and is subtractive

onto M and so M - N (M) E- f F(M) - S (M) G F.

L
Proof: Let x,y e H (M) then we have k x,k y e N (M) forLF 1 2 F

for some positive integers k and k . Therefore,

k k (x+y) = k (k x)+k (k y) £ N (M), hence x+y c H (M). Since X e HH(M) by
1 2 2 1 1 2 F F F

L definition, HF (M) is a submonoid of F, and from the definition of HF(M) it

L follows directly that M C HF(M).

Let x,x+y E H (M), that is k xk (x+y) NF (M) for

some positive integers k and k Hence k (k x),k k (x+y) c NF(M), that is,

1 2 2 12

kx, kkEk £ H which implies k ky £NCM which shows "that[1 2 1l2 1kl2 NF(M 12 NFM
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y c H (M). Thus H (M) is normal.
F F

Let x £ H F () then kx c N F(M) for some positive

integer k. Hence x+(k-1)Xc N F (M) - SF (M) which implies by Lemma 6, that

x e SF(M). Thus HF(M) SF(M) and so by Lemma 8 , 1 1F(M) is subtractive onto M.

Corollary: x EF (M) & (x+M) n (y+M) 0 0 implies y c 11F(M).

Proof: Immediate by Lemma 4.

Remark: The relation x*NpF CM) ý X* can be interpreted as

the "linear" dependence of x on M. This interpre-

tation is in particular obvious in the case where F is a finitely generated

free commutative monoid. In this case, F can be embedded in a linear space

over the rationals, Rn (where n is the number of the free generators of F)

and H F(M) is the intersection of F with the subspace of Rn spanned by NI.

Lemma 12: H is a closure operation on the submonoids of F; i.e.,
F

(i) M HpF(M) and HF(M) is a submonoid of F,

(ii) M 1- M 2 implies HF (M HF(M2), i

[
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(iii) 1HF(H F(M)) H F (

Proof: From Lemma 11 we have (i). (ii) follows directly

Lfrom the definition of H (M). From (i) we infer
F

I that HF(M) 6 11(FCH(M)), so let x c HF (H (M)). If x - X then x c HF (I).

If x 9 A then x*n N (H CM)) # X*. By Lemma 11 we have that 11 (M) is normal
F F F

and therefore we have for x 9 A and xcH (H (M)) that x* AH (M) # A*. This

implies k x HF (M) for some positive integer k ; hence k k x c for some

positive integers k and k which shows that x e HF(M).

The algebraic relations among NF, H and SF are summarized

in the following Lemma, some of them are implied directly by our previousL
discussions.

L
Lemma 13: The three operations NF HF and SF are commutative,L

idempotent and satisfy the following relations:

(i) 11F oN H
F F F

(ii) SF oNF = SF*HF F= SF

LIn other words, the semigroup of operations r generated by NFs HF1 SF is a

commutative idempotent monoid with a zero, in which N F is the identity element
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and S is its zero element.F

Proof: All we need to show is that the following table

is the multiplication table for

NF 1IF SF

N F N F H1 F S F

FF F

F N F H F S F

S S S S
F F F F

By Lemma 1, corollary of Lemma 6 and Lemma 11, we

have the following relations: H
NF NF = NN N S = S and NF HF IiF " U
From the corollary of Lemma 7 and Lemma 11 we get

the relations:

S o N = SF 0 H = SF
F F F F Fe th

From Df. 3 and the relation N F N we get the
F ~F N

relation: I
HF oN =F

By Lemma 7 and Lemma 12 we have the relations: I
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SF 0 S SF and IIF Ii It[

SF F a 0F F

LHence, we need to prove only that 1F 0 S= SF holds. By

LLemma 12 we know that SF(M) = 11F(SF (M)), so let x c 11F(SF(M)),then we have

kx e NF(S (M)) = S (M) for some positive integer k. But kx = x+(k-l)x and so

by Lemma 6 we have that x E SF(M). Hence We have II oSFSF*

[

V
L
L
L
L
t
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53 Factor monoids.

The method by which factor groups are defined in group

theory cannot be applied directly to our context in order to get a definition

of factor monoids. This is due to the fact that in our case we do not have

the property that two cosets are either disjoint or identical. However, by

defining a suitable equivalence relation in F we can define F/M to be the

abstraction of F by that equivalence relation and the term "factor monoid"

will be appropriate for F/M in the sense that factor groups become special

cases of factor monoids and the theory of factor monoids will be similar to

theory of factor groups. With this aim in mind we follow the suggestion of

Mezei [2] for the equivalence relation p and introduce the following definition.
M

Definition 4: Let M be a submonoid of F, we define a binary relation

OM in F by

xP y iff (x+M) r) (y+M) 0 0.
M

71
Furthermore, we shall use the following notations:

(i) for any equivalence relation p which is

defined in F: P(x) =df {y c F : xpy }.

(ii) for any submonoid M' of F we define [
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SM'/M M NI'/pM = {p (x) x E M'}.df M '

L Theorem 1: (Mezei) For any submonoid NI of F, p is the

[minimal congruence relation p which is defined

[ in F such that p(X) N F(M).

SProof: From the definition of PM it follows immediately that

[ pl is symmetric and reflexive. Let x pM y and y p N z,

then we have x + m = y + m and y + m = z + m for some m , m 2 m m C M.
12 3 4 2 3 # 4

Hence x + m + m = z + m + m and m + m ,m + m c M which imply x p z

1 3 2 4 1 3 2 .4

Thus pM is an equivalence relation.

Let x p1 y and z be any element of F, then we have

x + m = y + m for some m , m 2 M. Hence (x+z) + m = (y+z) + m which showsS1 2 1 2 1 2

that (x+z)pM(y+z). Therefore pM is a congruence relation defined in F.

By Lemma 3 we have that x E pM(N) iff (x + N F(M)) N F(M) # 0.

But since NF(M) is normal we have (x + NF(M))ft N F (M) # 0 iff x E NF(M). Hence

PM(X) = NF(M).

U Now let p be any congruence relation which is defined in

F such that p(k) = NF(M). By Lemma 3 we have that x pM y implies
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x + m = y + m for some m , m c N (M) = p(X). Since p is a congruenceS 2 if 2 F

relation we have x + m p x and y + m p y, which together with the equality
1 2

x + m W y + m imply x p y. Hence x pM y implies x p y.
2

Another connection among congruence relations which are

defined in F, is given in the following lemma.

Lemma 14: Let M and M be two submonoids of F such that

M M 2 and let x,y £ F, then x p1 y implies x P y.

1 2

Proof: Immediate by Df. 4.

Definition 5: Let M be a submonoid of F, we define a binary

operation @ in F/M by:

PM (x) @ PM(y) :df P (x+Y) "

Theorem 2: Let M be a submonoid of F, then:

(i) <F/M, *> is a commutative monoid with p ) M

as its identity element; I
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(ii) <F/M, *> is the image of <F, ÷> under theL
homomorphism rM(x) =df PM(x) whose kernel is N (M);

(iii) the maximal submonoid of <F/M, O> which is

L a group is <S (M)/M, 0>F

(iv) if F is a cancellative monoid (i.e., if x + z =

[y + z implies x = y for all x, y, z E F,) then <SF (M)/M, O> is the maximal

subsemigroup of <F/M, O> which is a group.

Remark: As it is usually done, we shall use the symbols

"F/M", tSF(M)/MW and "HF(M)/M" to denote the

I sets of the equivalence classes and the algebraic systems consisting

of these sets and the operation D.

Proof: Since pM is a congruence relation we get that

xI PM x and y IM y imply (x + yI) PM (x+y) and

L therefore 6 is well defined.

L (i) Clearly F/M is a commutative semigroup, and

pM(x) 0 pO(A) = M(x) holds for any x e F since pM is a congruence relation.[M
Hence F/M is a commutative monoid with pM(X) as its identity element.

(ii) Immediate.
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(iii) PM(x) is a unit in F/M iff there is y c F

such that p,,(x+y) = pM(X). Hence, by Lemma 6 and Lemma 11, pM(x) is a unit

in F/M iff x e SF( l). Since SF (M)/M forms a group we get that it is the

maximal submonoid of F/M which is a group.

(iv) We have to show that in the case where F is

cancellative, pN(x) + PM(U) = pM (x) implies pN1(u) - p (X). From (x+u) pM x

follows x + u + m x + m (for some m , m C M), hence, by the law of1 2 1 2

concellation we get u + m = 2 which shows that p M(u) = pf(). M1 2 N

We can strengthen the result stated in Theorem 2 (iii)

as follows:

Lemma 15: Let M and M be submonoids of F, then M /M is a submonoid

of F/M which is a group iff M is subtractive onto N F(M).

Proof: If M /M is a group then for any x e MN there is

y E M1 such that pM (x+y) = PM(A). Thus, for any

x C M there is ye NI such that x + y e pM(X) = N (M). Hence MI is1 F

subtractive onto NF(M).

If MNI is subtractive onto N F (M) then for any x £ N1

there is y c M such that x + y e NF(NI). Hence for any a £ MI//M there is



I
21.

[b e M /MI such that a W b pM(A) and since M /M is a commutative monoid, this
1 1

[ implies that MI /NJ is a group.

Corollary: If M _ NJ then fM /N is a group iff M is substractive

[ onto MI.

L Proof: Immediate by Lemma 10 (ii)

Most of the expected connections between homomorphisms

of monoids, factor monoids, congruence relations and normal submonoids can

be established similarly to the corresponding results of group theory.

Theorem 3: Let F and F be commutative monoids and let

-- f : F - F be a homomorphism of F onto F1 1

(i) Kf, the kernel of f is a normal submonoid of F.

(ii) The relation pf determined in F by f:

SXPfyY < f(x) = f(y)

L is a congruence relation and pf(X) = Kf .

(iii) F is unit-free (i.e., u + v = A implies

u = X for all u, v c F ) iff SF(Kf) = Kf.

Proof: Mi) See Lemma 2.1[
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(ii) Immediate.!

(iii) Let x + y e K then in F we have f(x) + f(y) =f 1

Hence, if F is unit-free then x + y c Kf implies x e Kf which shows that

SF(Kf) = Kf . On the other hand if we have in F u + v = X then u f(x)

and v = f(y) for some x, y c F and f(x+y) = f(x) + f(y) = u + v X; i.e.,

x + y e Kf. Hience if SF(Kf) = Kf then we have x e Kf and therefore u = f(x) =

and thus F is unit-free. I1

Theorem 4: Let F and F be commutative monoids and let f: F + F

be a homomorphism of F onto F . There exists a unique

homomorphism O:F/Kf F such that the following diagram is commutative,

f i

f

F - 4 F

Kf~ I
F/Kf f

that is, o rK=f (where rK(x) =dPK(x)). Moreover,ý is onto and it has ]r f =d f

a trivial kernel, namely K, = {Kf }. However, 4 is an isomorphism of F/Kf

onto FI iff P f= PK
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I

Proof: Clearly, we define 0 by (pKf (X)) =df f(x).

LBy Theorem 1 and according to Theorem 3(i), we have

L that p is the minimal congruence relation p which is defined in F such that
Kf

V p(X) = Kf. By Theorem 3(ii) we have thatpf is a congruence relation which is

Ldefined in F such that Pf(X) = Kf lHence implies pfP which shows that €• P~f

is well defined. It is obvious that ¢ is the only mapping from F/K to F1

which satisfies the relation =-r f.

Kf

From the fact that r and f are both homomorphisms of F

and f is onto, and from the relation 4erK f it follows that * is a homo-

morphism of F/Kf onto F 1

[ Note that

L f (x) E K iff f(x) = X in F,

L i.e., iff x c KfLi.e., iff p (x) Kf
OK f

LHence, K, {Kf

Now, if pf PKf and (p Kf (X)) = (p, (y)), then

f(x) = f(y) and therefore pf(x) =PK f (x) Kf (Y) = pf (y). Hence =f = Kf

implies that € is an isomorphism of F/Kf onto FI. On the other hand, if ý is an
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isomorphism then

f(x) = '(p~f(x)) K(y)) = f(y) implies (x) P (y)

ffKf PKf

that is, that pf implies p,, . Sinze always pKf implies pf, we get that if

is an isomorphism then pf = PK

fH

We end this section with a discussion on certain con-

ditions for F/M to be finite.

Lemma 16: Let M be a submonoid of F. If F is cancellative and

SF(M) j F then F/M is infinite (and so F is infinite

too).

Proof: Let x c F and let k > k, be two distinct non-negative

integers. Assume that pM(k x) = P\(k2x), then k1x + mi = k2x + m2 for some

m, Im 2 e M. Hence k2x + (kI-k 2 )x + mI = k2 x + Mi2 , which by cancellation implies

(kI - k 2 )x + m I M. Since k > k 2 we get kI-k 2 2> 1 and so we have Ii
x + ((k 1 -k 2 -1)x + ml) c M which shows that x e SF(MI). Hence if x 4 S F ( then

pm(k1X) i p\(k 2 x) for any distinct non-negative integers kl, k2, and thus F/M

is infinite.

r
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I Lemma 17: Let F be cancellative and NM be a submonoid of F.

I If x c F but x 4 ILF(M) then pM(klx) = pN1(k 2 x)

I implies 1kI-k 2 1x = X . In particular, if kI j k2 and yet p M(klX) = pM(k2x),

i (where x c F but x. iCOi), ) then x is a unit of F (i.e., there is y c F

such that x + y = A).

Proof: As in the proof of Lemma 16 we get that kl-k 2 ix C N1,(M).

Thus x ý 1IF(M) implies Ikl-k 2 1x = A.

Corollary: Let F be cancellative and unit-free and let M be a

submonoid of F. If HF(M) j F then F/M is infinite.

Remark: Note that since 1F (m) S SF (M) C- F holds, 1F (M) = F

" implies SF(M) = F.

L
Lemma 18: Let F be cancellative and unit-free, M be a submonoid

L of F and w E F; then w*n NF(M) is a normal submonoid

of F generated by a unique element.

Proof: Let x, x + y c w* for x, y E F, then x = 1 w and

Tx + y = k2 w for some non-negative integers k,, k2.

£
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If k2 > k1 then let k2 = lý + k and we have kIw + kw = kRw + y and so by

cancellation we get y = kw e w*. If k2 < kI then let k = k2 + k and we

have x + y + kw = x and so by cancellation we get y + kw = X. But F is ii

unit-free and therefore we have y = X c w*. Thus w* is a normal submonoid

of F. Hence w* n• NF(M) as an intersection of normal submonoids of F is a

normal submonoid of F too.

If w*•N F (M) = X* then X is the generator of w*O NF(M). If

w*O NF(M) j X* then let k0 be the minimal positive integer k such that

kw E (w*n NF(M)). Clearly (k 0w)* G (w*, NF(M)) and we shall show that

(k 0 w)* = (w*NF N F(M)

Let kw e (w*N NF(M)) and let k = pk 0 + r where p,r are non-negative I
integers such that 0 = r < k0 . Then we have kw = p(k 0w) + rw and

kw, P(k 0 w) E (w*n NF(M)) . But w*tNF (M) is normal and therefore rw e (w*rt NF(11));

hence, by the choice of k0 it follows that r = 0 and kw = p(k 0 w) c (k 0 w)*. II

Thus w*On NF(H) = (kow)*.

As for the uniqueness of the generator of w*f NF(M) we-shall show that

1-I
x* = x2 implies xI = x From x* = x* follows that x = k xo andx = kx
1 2 1 2' 1 2 1 2 2 =1 1

for some positive integers k,# k2. Hence xI = k1 k2x! and x= xI + (k 1k2-l)x 1

I
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- which by cancellation implies (k 1 k2-1)x 1 = X and this by the fact that F is

Lunit-free, implies k k2 = I and thus x= x212

IDefinition 6: Let F be cancellative and unit-free, and M he a

L. submonoid of F. For any set B = {..wi..} of

generators for II (M) we associate the set B1 {. .... }where c. =kiw

for any i, is the generator of w.*NF( ().

L'e denote by [BMI] the set of all elements of IIF(M) of

the form x .xaiwi where for any i : 0 < a. < k (and ai # 0 only for a
11 1

finite set of values for i).

Lemma 19: Let M be a submonoid of F where F is cancellative and

unit-free, and let B be a set of generators for

L HF ( T). Then:

L (i) B M is a set of elements of N F 0),

1 (ii) for any x e HF:(M) there is y 6 [B,.1] such that

x + B* +IM
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(iii) (x1 + PI) (X2 + B*) 0 • and xI N (w) °Onply

x2 E NF ().

Proof: From the definition of B it follows directly that B

is a set of elements of N (M). Hence B* G N (M) and
F N F

this implies (iii).

Let x e 11F(M) then x Za.w. For any i there are

non-negative integers b. and c. such that a. b.k + c. and 0 - c. < ki;
no-eaieitgr 1 1 1.i 11 1

1~Li

so x =1bi +Ic.w. Let m =Zb.e. and y = c.w then x e B* N [c 1]1 i +

and x =y + m. Hence x + B* _ y + B*

Corollary: (i) [B] u B, is a set of generators for IF(M).

(ii) iF(H)- U {y + B* : y E [B

(iii) M ]n N F (M)) U B is a set of generators

for NF(N).

(iv) N 0(") - U y + B, :y C ([NM]nNF(N))}.

In order to apply these results to factor monoids we need the fol-

lowing lemma. j
[
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Lerma 20: Let M1 and M2 be submonoids of F such that M M M2

If 1/lm is finite then F/M and H are finite too
1 ~2 2

(hence, N F(M 2)/l is also finite.)

P roof: Let F/H1 (Xl, ... , p\ (X,). By Lemma 14= {p~ (x1 )

we have that for any x c F : p (x) - pM (x).
1 2

k
Hence F = and therefore I/H contains at most k elements.

Let pl(x) be an element of M2 /M1 then p1 (x) G p (x) c F/M 12 i 1

Let p (x) and p (y) be any elements of M2 /M1 which are included in pM (z) for

some z e F, then XPM y and therefore p 1X) = p (y). Hence M contains

at most the same number of elements as F/M2.

By taking M2 = NF(M2 ) we get that NF(M 2 )/Ml is finite.

Theorem 5: Let F be cancellative and unit-free and M be a

submonoid of F. If IIF (M) is finitely generated

L then NF M) is finitely generated and IfF(M)/M is finite.

L
Proof: Let B be a finite set of generators for 11F((M), then

clearly B and [B are finite.

From the corollary of Lemma 19 it follows that N F(M) is generated by a subset

of [B M] uB and so it is finitely generated. From the same corollary followsMH
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that F(M)/B* is finite, but B3* G N (M) and so by Lemma 20 we have that

IHF(M)/NF(M) is finite but LF (M)/N F(N) = H F(M)/M and so HF(M)/M is finite.

Combining Theorem 5 with the corollary of Lemma 17 we

get a necessary and sufficient condition for F/N to be finite in the case

where F is finitely generated,cancellative and unit-free, e.g., in the case

where F is a finitely generated free commutative monoid.

Theorem 6: Let F be a finitely generated cancellative and

unit-free commutative monoid and let M be a sub-

monoid of F then F/M is finite iff H F(M) = F.

1
I.
1J
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I

1§4 Normal submonoids of F

Let F be the free commutative monoid generated byn

L = {el, ... , e } . The special case of the finitely generated submonoids
n

I of F is of importance to the study of commutative events since these are
n

the submonoids of Fn which are denoted by regular expressions over E as

an alphabet. For a detailed discussion on this connection the reader is

referred to [1].

Lemma 21: Let M be a submonoid of F . There is a finitely

generated free submonoid N of NF(M) which is normal in Fm and F (M) = IIF (N).
n n

Proof: Let Rn be the n-dimensional vector-space over the

rationals; then, as one can easily verify,

H F (M) = FnA V(M) where V(M) is the sub-vector-space spanned by M and clearly

n

nis the first orthant of Rn.n

I From linear algebra we know that for any sub-vector-space

j V of Rn which has a basis in the first orthant of Rn, one can find such a

1 basis {vl, ... , vk} with the additional property that v is a vector of V with

k
non-negative components only iff v = E rivi where for all 1 5 i 6 k : r. 0.

i=1 1
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Since M C_ F , V(M) has such a basis in the first orthant of Rn say [vj, .... ,Vk).
n

For any vi in this basis there is positive integer pi such that PiVi c F n1n

and therefore p~vi E 11F (M). But this implies that piqivi NF M) for some
n n

positive integer qi. So let wi = kivi be the first non-zero point on the

line determined by v. which is an element of NF (M). Since {vi, ... vk
n

is an independent set of vectors in Rn we get that W = {WI, ... , wk} generates

a free submonoid N of NF(M).

Let x, x+y E N for some y E Fn then clearly y E V(M) and

k k k
therefore y e HF (M). So let x = Z a.w. y = E r.v. and x + y = £ biwi

n~ Ii=l ~lI1i=l

then we have

ri= (bi 1 ai)k. 0 for all 1 i - k

which shows that y e N and therefore N is normal.

From V(M) = V(N) follows V(M) ri Fn = V(N) nF n, that is, j
IF (M) = HF (N).

n n

Following some of the ideas which were discussed in the

last part of the previous section we define: A,
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f Definition 7: Let N be a normal free submonoid of Fn generated

I. by the basis W = {wl, ... , Wk}.

Sa: We denote by [W],, the set of all elements x of

k
F for which in Rn we have x = E riwi where for all 1 4 i 4 k : ri is

rational and 0 5 r. < 1.

b: We define a binary operation <+> in the first

orthant of V(N) with regard to W:

1. k k k
x =i=£ r~w.1 and y E s.w. imply x <+> y =df Z (max(ri,si))w.I~ i i ii 1 1

I Certain properties of <+> are summarized in the follow-

ing lemma; the proof is straightforward and will not be given.

Lemma 22: (i) <+> is associative, c6mmutative and idempotent.

[(ii) x,y C [W]H iff x <+> y [W]E
H I

Similarly to Lemma 19 we have the following theorem which

establishes the relation between N and 11F (N) in more detail.

F n
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Theorem 7: Let N be a normal free submonoid of F generatedn

by the basis 11 and let H = H1F (N).
n

Then:

(i) [N] is a finite set of elements of H,

(ii) for any x E If there is y E [IV] such that
If

x + N y +N,

(iii) (x+N)rn (y+N) J 0 (i.e., xPNY,) for x,y £ II implies:

(1) (x+N) e\ (y+N) = (x <+> y) + N, >1
(2) x,, y, x <+> y E: pNX W

N

(3) if x, y e [N]H then x = y.

Proof: (i) From the definition of [W] it follows that if

x E [W]H then px E N for a suitable positive integer

p and since x e F it follows that x E H. Clearly [W],. is finite.

Let I - {wl, ... , w.} . From the definition of HF (see section

1 ~k

1, Df. 3) it follows that in our case, for x E F , x c NI iff x E r.w. where
fon ii 1 1

for all 1 -• i -• k : ri is a non-negative rational.

r
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k
(ii) Let x c II then we have x E r.w. for

i~l 1 1

non-negative rationals r.. For any 1 - i < k let ai be a non-negative integer11L<
and s. be a non-negative rational such that r. = a. + s. and 0 s.< 1;[1 "" 1 1 1 1

and so we have
k k

x = a.w. + Z s.w.
i=l 1 1 i=l i

k k
Let w = E a.w.and y= Esi w,then we have w E N and x = w + y. From

i=l1 i=l

x, w e F follows that y E F (in other words, Fn is a normal submonoid ofn n'n

the first orthant of Rn which is a commutative monoid) and so v E [Wi and

x+N -y+N.

k k k
(iii) Let x = Z r.w., y = E siwi and z Z t.w. E

i1lI i1l i=l 1 1

L (x+N)A (y+N) for non-negative rationals rip si and ti. *Hence we have

k k k k k
z = E tiw1 = Z r.w + Z aiw- Z s.w.i + E b.w.

Li=l1 i=l1 i=l1 i=l i i=l 1

or
k kz : _ El(r i+ai)w i = E` (s i+b.i)w.i

i1 i=l

Sfor non-negative integers ai and bi. Since W is a linear basis of V(N) we get

ti = r. + a. = s. + b. for all 1 - i - kL1 1 1 1 1

which implies ti = max(ri.,si) + min(ai,bi)

7 and a.i-bi = s.-r. for all 1 i kL 1 1 1

L



36.

k
Let w E (minCal,b.))w, then clearly w c N and we

have z= (x <+> y) + w which imt:1ies (x+ N) A(y + N) 9 (x <÷> y) + N

On the othei= hand we have:

k
x <+> y = E r.w. 4-E (si-ri)wi = x + (ai.-bi)w.

i=1 1 1 sr. 1 ai ab i

and

k
x <+> y E sj w + (ri-si)wi = y + E (b i ai)w,i=1 i i •Ifas i b iai

Hence x <+> y c (x + N) A (y + N) and -this concludes the proof of (iii), (1).

Furthermore, the last equalities- show that (x <+> y)pN x and (x <+> y)pN Y

and since we assume xPNY we have- proved (iii), (2).

The same eq ualities yield

X <+> y = X + Z (s-r.)w. y+ (ri-si)wri 1Si

and so x,y c [W]H implies

0= Iri-si < 1 for all 1 i -5 k

and yet Iri-silwi e N which is Blossible only if~ri-sil = 0 and therefore x = y .

Corollary: (i) [W]I&' W is a set of generators for If and

therefore H is finitely generated.

!
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(ii) Hi/N = {y + N : y e [Wf]I } and so H/N is finite.

I

Now, by Lemma 21 and Theorem 5, Theorem 7 yields the fol-

i lowing result:

Theorem 8: For any submonoid M of F , if MI is normal then it

is finitely generated. In particular M is a finite

union of disjoint cosets of a normal free submonoid of M.

Proof: By Lemma 21 there is a normal free submonoid N of

M such that HF (M) = H F (N). By Theorem 7 we get that HF (M) is finitely
n n n

generated and so by Theorem 5 we get that N F (M) = M is finitely generated.
- n

From the relations N IM C HF (M) = iHF (N) it followsLn n

that x e M and xpNY imply y e NF (M) = M. Hence we get M = U'{y + N : y c [IV]
n

and so by Theorem 7 we get that M is a finite union of disjoint cosets of N.L
Thus Theorem 8, the corollary of Theorem 7 and Lemma 9 showL

us that the operators NF H F and SF have in their range only finitely generated
n n n

Ssubmonoids of Fn. This is implied directly from Theorem 8 "alone" since HF
n

F S~~and Sn have in their range only normal submonoids• of Fn
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